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SUMMI,RY

The validity of applying chi-square bas,=d confidence intervals to farfield

acoustic flyover spectral estimates was inves-igated. Simulated data using a Kendall

series and experimental acoustic data from the NASNMcDonnell Douglas 500E

acoustics test were analyzed. Statistical sign ficance tests to determine the equality of

distributions of the simulated and experiment,_l data relative to theoretical chi-square

distributions were performed. Bias and uncertainty errors associated with the spectral

estimates were easily identified from the data sets. A model relating the uncertainty

and bias errors to the estimates resulted, whi,,'h aided in determining the

appropriateness of the chi-square distributior based confidence intervals. Such

confidence intervals were appropriate for the non-tonally associated frequencies of the

experimental data but were inappropriate for the tonally associated estimate

distributions. The inappropriateness at the tonally associated frequencies was

indicated by the presence of bias error and n_n-conformity of the distributions to the

theoretical chi-square distribution. A techniq_Je for determining appropriate

confidence intervals at the tonally associated frequencies was suggested.
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SYMBOLS AND ABBREVIATIONS

digitization sample time interval

type 1 error, the accepted error rate of rejecting a true null

hypothesis

real components from DFT

one-sided amplitude spectra

one-sided power spectra via amplitude spectra

imaginary components from DFT

frequency dependent bias error

Kolmorogov-Smirnov test statistic

degrees of freedom

uncertainty error

transfer function for filter

frequency, radians/second

probability of truth of a relationship

parametric variance

parametric power spectral density

estimate of power spectral density

mean of ensemble of Sx(_O)

sample standard deviation of Y

critical value of Student's t-distribution

parametric mean

window correction factor

chi-square

digitized time series data

discrete Fourier transform
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INTRODU(_TION

By including confidence interval or var+ance determinations with any reported

experimental measurement data, a researcher more clearly describes his quantitative

results. By doing so, the researcher attempts to convey the level of precision and

accuracy that reflects the quality of the data. n aeroacoustic spectral data Rao and

Preisser 1 have shown that asymptotic techniques for estimating the variance of power

spectral density estimates work quite well. Fc+r acoustic spectral data, determined by

digital techniques, a chi-square (3(,2) distributi)n based confidence interval formula is

sometimes applied to determine confidence itltervals for experimental data. The

formula theoretically models the variation of t'le individual or averaged spectral

estimates (Sx(co) or S--x(co) respectively) about their parametric values Sx(co) at the

frequency co. Specifically the confidence inte'vals are determined as shown by Otnes

and Enochson 2 as

I df° Sx(co) df° Sx(co) t
Prob --_--- <Sx(cO < .... =p,

Zdf; od2 Zc_f; 1 - od2
(1)

where p, the probability of truth of the relation is selected by the researcher, oc = 1 - p,

Zc_f; cd2 , and Zc_f; 1 - od2 , represent the abscissas of the Z 2 probability density

function with probability areas of _2 and 1 -cd2 respectively. The number of degrees

of freedom, df, is equal to twice the number of individual estimates Sx(cO) which were

averaged to obtain the mean S--x(cO). As sucIt, this formula establishes a probabilistic

relationship between the averaged spectral _ stimates and the parametric values

which they estimate.
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It should be recalled from statistical sample theory3 that experimental

measurements are performed to estimate parametric values that are not exactly

determined (unless the sample universe is exhaustively sampled). The best that can

be achieved is to estimate these parametric values in a probabilistic sense. As an

example, confidence intervals serve to probabilistically relate the sample data

estimates to the parametric values.

A major assumption of the %2 distribution based confidence intervals for

spectral estimates is that the time series input data are Gaussian distributed. When

this is true, Otnes and Enochson2 have shown that the real and imaginary

components associated with the Fourier transforms of the time series data are

independent Gaussian random variables and as such squaring and adding them

creates a Z2 variable. By example, for the Gaussian distributed real components, ak,

a_ is a %2 random variable with 1 associated degree of freedom. When added to the

similarly distributed squared imaginary components b_, this yields a new Z2

distribution with two associated degrees of freedom. This relationship is known as the

additive property of the %2 distribution.

The purpose of this work was to assess the appropriateness of using the Z2

distribution based confidence interval formula for complex helicopter flyover data. This

can be achieved by determining statistically if the individual spectral estimates which

are averaged to determine Sx(_) are indeed X2 distributed. The experimental

acoustic data is from a recent NASA/McDonnell Douglas Helicopter Company

(MDHC) farfield acoustics test using the MDHC supplied model 500E helicopter.

Since the acoustic data for these analyses was collected and processed using

ensemble averaging techniques 4, the results are pertinent to this experimental design

and analysis scheme.
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COMPUTATION,_L METHODS

Power Spectra from Amplitude Analysis

Before the fast Fourier transform algori: hms for computing the discrete Fourier

transform (DFT) were commonly used on digi:al computers, banks of analog bandpass

filters were used to measure the frequency content of acoustics signals. For continuity

with this earlier work, power spectra (PS) are now determined from amplitude spectra

using digital techniques for most far-field acot,stic measurements.

Two major assumptions of this spectra analysis technique are (a) that the time

series data are stationary, and (b) that the length of the time series data analyzed

contains an integer multiple of periods. The _,xperimental flyover acoustic data is non-

stationary. This is largely due to the modulation of the acoustic sources by spherical

spreading. The ensemble averaging experin ental design and analysis scheme 4 is

used with the intent to make the data more Io,-ally stationary. This is achieved by

averaging spectra which are determined from sequential short segments of the time

series. Because helicopter acoustic time series data have signals of different periods

within the data, the assumption of analyzing i lteger multiples of periods of data is

difficult. This assumption is not adhered to a;ld the ramifications (spectral leakage)

have been discussed by Burgess. 5 For calct lating PS, continuous time histories x(t)

of length NAt are discretized every z_t second; so that

Xj = x(jAt) for. = 0, N - 1.

The Fourier series resulting from the DFT in r=.lation to Xj can be expressed as

M / 2_kj 2_kjl
lak cos - -- + b k sin ---N--I (2)xj a°

2 N
k=l
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for j = O, N - 1 and N = M, where the Fourier coefficients are defined as

and

N-1 2_kj
ak = 2___ Xj cos

N j=O N

N-1 2_kj
bk =2 _ Xjsin--

j=O N

(3)

(4)

fork=O, M.

The one-sided spectra at the independent Fourier frequencies is

•_k = 2'_ a_- + b_ ,so that the power spectra via amplitude spectra is equal to _,k2 .

These quantities are interpreted as the finite power or the mean square of the acoustic

time series pressure data as a function of the specific Fourier frequencies.

When M, the number of Fourier coefficients, is chosen to be less than the

number of discrete points in the time series, the transform is approximate. For the DFT,

where by definition N = M, the relationship between the Xj and the transform is exact.

The frequency domain presentation of the time domain data is exact if the data were

filtered to exclude all frequencies above the nyquist frequency.

Power Spectral Density

Another spectral analysis technique used in acoustics and other engineering

disciplines is the power spectral density (PSD). Again the assumption of stationarity of

the time series data is required by this analysis technique. It may be defined, as

shown by Hardin6 for a signal X(t) whose total duration is bt_t from discrete data X(nt_t)

for n = O, b- 1 as
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where

Sx( ) = WsI 2

b-1

XF((_) = At _ d(n&t) X'n&t)e-io_n&t.
2_ n=O

(5)

(6)

The data window d(nAt) used in this analysis is the rectangular (boxcar)

window, resulting in the window correction fa,'tor W s being unity. The appropriate

interpretation of the PSD is as the power (or mean square pressure) per unit

frequency.

As both spectral estimate techniques (=S and PSD) involve using the DFT, an

exact transform, the variability observed from the spectral estimates is largely a

function of the variability of the data itself. Fi.¢!ures 1A to 1E present frequency domain

data using the PS method from one of the N,t, SA/MDHC 500E flyovers. Because the

range of the mean square pressures is so lar,;e a series of graphs is used to show the

data distributions of interest. The ensemble _]veraging experimental design technique

employed allows for thirty ensembles at eacl" selected directivity angle pair,

consequently there are thirty two-degree-of-fieedom spectral estimates at each

frequency analyzed. As the acoustic analysi,_ procedures require entire spectra to be

presented, which involves averaging of the n:ean square acoustic pressures within

frequencies and then converting to the dB sc lie, an understanding of the intra-

frequency variability is not generally present_ d. The standard acoustic analysis

generates a single estimate with sixty associ_Lted degrees of freedom. Because

distributions of estimates are used in the forfl coming analyses, thirty estimates with

two associated degrees of freedom are used at each Fourier frequency. Such a

presentation is fundamental to understandin¢.i the sample variability and defining the

distributions of the frequency dependent mean square acoustic pressures which will

direct the appropriate confidence interval amLlysis.
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Ideal Measurement Data - Kendall Series

As the parametric functions of far-field acoustic data are not known during

flyover situations and the data's character changes as a function of time, it is

necessary to have a more well behaved time series for example cases. A test data set

using the Kendall series can serve this purpose 6. The stationary Kendall series Yn for

N points is determined using the relationship

Yn = al Yn-1 + a2 Yn-2 + Xn (7)

for n = 0, N. Selected initial conditions for Yn-1 and Yn-2 are set at 0.0 with a 1 = 1.0

and a 2 = -0.5 yielding a stable second order recursive filter with characteristics of a

Iowpass and bandpass hybrid filter. The input series X n is a uniform distribution with

mean of 0.0 and variance (o"_x) of 0.5. To associate the output series with time, each

successive Yn was assigned a At of 1 second. Hardin6 showed the PSD for such a

series could be analytically defined as

( )(1 +1 1)1 + 1 -1 +2-_-_ 1_$2 1-S 2Sy(e)) = 2-_ 1 - S 1 e-ie) 1 - S 1 ei(o e-ico ei(o (8)

where

and

A

g ___

(_2 $1

(Sl -s2)(_- sis2)(1-s_)

(Sl-s2)(1-sis2)(1-s_)

(9)

(10)
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$1,2 = al + _/a'_ + 4 a_
2 (11)

The theoretical Sy(_O) can be consider, ;d to be the parametric function that all

estimates of the series approximate.

Kolmorogov-Smirnov One Sample Test

The Kolmorogov-Smirnov test statistic 7 D can be used to perform a significance

test which will facilitate accepting or rejecting the hypothesis of equality of a theoretical

distribution and a measured sample distribution. Sokal and Rohlf 7 have

demonstrated that this nonparametric goodn_ ss of fit test works well for small sample

sizes. Specifically. D is determined as the la gest of the values d + or d i where

d_" = F i - Fi and d i =lFi-1 Fi • Fi is the i-t_ standardized cumulative expected

frequency of the theoretical distribution, and "-i is the i-th standardized cumulative

observed frequency from the measured sami_le distribution. The standardization used

for both distributions is to divide each elemer t of the distribution by the distribution's

mean and then to multiply the elements by th_ expected degree of freedom. The

statistical significance of the D statistic is deb_rmined using tables of critical values of

the Kolmorogov-Smirnov one sample test 8. _,lpha levels of 0.05 were used for all

significance tests, therefore the accepted err_Jr rate of rejecting a true null hypothesis is

five percent.

APPLICATIONS USING KENi)ALL SERIES TEST DATA

Some of the computational methods j[ st described were used to analyze the

Kendall series test data. A particular advantage of the Kendall series is that long time

series of random test data can be generated. This allows for spectral estimates of high

numbers of degrees of freedom to be determ ned. Figure 2-E displays the PSD of a
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single estimate having 200,000 degrees of freedom in relation to its parametric

function, the Kendall series theoretical PSD. This estimate is observed to closely

follow its parametric function. One hundred thousand time series blocks of the Kendall

series were analyzed to produce this estimate.

The series of graphs in Figure 2 serve to illustrate the two types of errors that

occur in spectral estimates. These include uncertainty error and bias error.

Uncertainty error, which is characterized by the scatter of the estimates about

their expected values, is observed to vary as a function of the number of degrees of

freedom associated with the estimate. The uncertainty error decreases as the number

of degrees of freedom increases and is random.

The two degree of freedom case (Fig. 2A), a single unaveraged estimate, is

observed to not closely resemble the parametric spectra it estimates. Generally, as the

number of degrees of freedom increases, the correlation between the estimate and the

parametric values increases (Fig. 2B to 2E).

Bias error, which is systematic, can be seen most clearly in Figure 2E. For this

200000 degree of freedom estimate virtually all uncertainty error has been eliminated

through the spectral averaging process. The difference between the estimate and the

parametric function is the systematic bias error introduced into the estimate by the

PSD analysis. Hardin 6 has shown bias error to be proportional to the second

derivative of the PSD parametric function. All of the estimates of Figure 2 (A to E) have

a similar bias error but because of its magnitude relative to the uncertainty error it is

only obvious for the 200000 degree of freedom case.

The bias error is proportionally largest at maxima and minima of the second

derivative of this function. The bias error's behavior can be most easily explained as

mimicking the output of a Iowpass smoothing filter operating on the parametric PSD

function. For the estimates, the peaks are not as high and the troughs are not as low

as they would be if the spectral estimation techniques were unbiased estimators.
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Within a single spectrum there may exist pos tive, negative, and zero bias depending

on the shape of the parametric function.

Confidence Intervals

For the confidence intervals about spe.-tral estimates to be appropriate, they

should account for the errors associated with the estimate. Consequently, the

confidence interval formula should include a _unction that models the distribution of

spectral estimate uncertainty and bias. To te_t the hypothesis that this confidence

interval function should be based on the _2 fitmily of distributions for spectral estimate

variability, 10000 estimates each from a rang =.of numbers of degrees of freedom were

generated. Figures 3A to 3E display these results. For all of these estimates, the

parametric function is the same theoretical P_D as displayed in the Figure 2 series.

These results show how the estimate variabil ty changes as a function of the number of

degrees of freedom associated with each of the 10000 estimates which make up these

data. Figure 4A displays the distribution of e _timates from a similar analysis as above

but only presenting the PSD at a single frequency (0.113 Hz). The shapes of the

distributions are observed to qualitatively agree with the standard _2 distribution.

Generally this involves the transition from an L-shaped asymmetric distribution to a

symmetric normal distribution when the numl_er of degrees of freedom range from low

to high. The cumulative probability distributi( ns of these data were compared to

theoretical X2 distributions with the appropriate number of degrees of freedom (Fig. 4B

to 4F). There are two cumulative probability _unctions on each of the graphs (Fig. 4B to

4F) but because they are so similar they ove'lap each other and cannot be separately

distinguished. The Kolmorogov-Smirnov tesi statistics (Table 1) were determined to

test the hypothesis of equality of the associa ed cumulative frequency distributions.

The significance of the test statistics was det+._rmined by comparing them to the critical

value of the Kolmorogov-Smirnov one-samp e statistic with the appropriate sample
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size and alpha level. The insignificant (o_= 0.05) D statistics indicate that there is

insufficient evidence to reject the hypothesis of equality, so the distributions of the

Kendall series data and the theoretical _2 data are equal.

Interpretation of Confidence Intervals

As the PSD spectral estimates for the Kendall Series were shown to be _2

distributed then equation (1) for confidence intervals seems initially appropriate for

these data. To illustrate this, eighty percent confidence intervals were selected. The

correct interpretation of a confidence interval from equation 1 when p - 0.8 is that the

probability is 0.8 that the parametric value will lie within this confidence interval. An

alternate interpretation is that if a large number of estimates and their associated

confidence intervals are determined, then 80 percent of such intervals would bound

the parametric value.

To verify this interpretation four-hundred such estimates and intervals were

calculated from the Kendall Series data at two different degrees of freedom (2 and

1000) and at two different frequencies of the PSD spectra (0.016 and 0.113 Hz).

These frequencies were selected in relation to the amount of bias error associated

with these frequencies. Specifically, as shown in Figure 2-E, 0.016 Hz is

representative of a frequency with very little bias error and 0.113 Hz has the highest

bias error for the Kendall series used.

Figure 5 A-D shows graphically the four-hundred individual confidence intervals

for the estimates in relation to the parametric value _ which the estimates approximate.

In these cases _ are the values of the theoretical PSD for the Kendall series evaluated

at either 0.016 or 0.113 Hz. From the data presented in Figures 5A to 5D, the

percentage of the 400 trials in which the intervals bounded I_is presented in Table 2.

For the low bias associated frequency both degree of freedom cases exhibited

close to 80% of the intervals bounding I_. For the high bias associated frequency, the
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2 degree of freedom case resulted in 80.5% ,)f the 400 confidence intervals bounding

_, with only 63.5% for the 1000 degree of fre_:dom case.

APPLICATIONS USING AC(_USTIC FLYOVER DATA

To determine the appropriateness of using _2 distribution based confidence

intervals for experimental acoustic flyover data, a similar analysis was done. For the

acoustic data the power spectra from amplitu Je spectra were used and the sample

size was much smaller (30 versus 10000 as !or the Kendall Series).

The ensemble averaged (n = 30) pow{_r spectrum of the example 500E data

(Figure 6) is shown to be much more comple_ than the unimodal Kendall Series data

previously examined. Because of the presence of "spikes" in the acoustic power

spectrum, the difference in estimated power ctistributions relative to frequency was

investigated. The "spike" characteristics obs._rved in the graph can be associated with

the helicopter's main rotor and tail rotor blade; passage frequencies and their

harmonics.

The term tonal will be used to denote _hese characteristic "spikes" and non-

tonal will be associated with the frequency d._pendent power measurements which are

not pronouncedly higher or lower than their r_earby surrounding estimates.

Results of the frequency dependent K31morogov-Smirnov one sample tests are

displayed by symbols in Figure 6 and in Tabl. _ 3. The statistical tests were performed

to determine if the distribution of the estimated power within the associated

frequencies followed a X2 distribution of two ,Jegrees of freedom. The first four tones

within the spectrum had significant (o_ = 0.05) Kilmorogov-Smirnov statistics indicating

the distribution of estimates associated with these frequencies are not from the _2

family of distributions.

The spectral analysis for these data h_d a Nyquist frequency of 12500 Hertz but

only the estimated frequencies up to 500 Heltz are presented. For this spectrum there
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were 45 (out of 1019) other frequencies which yielded significant (o_ = 0.05)

Kolmorogov-Smirnov test statistics. These non-x2 distributions were associated with

non-tonal frequencies and were always at least 15 dB lower in power than the low

frequency tones observed. They appeared to be randomly spaced within the non-

tonally associated frequencies of the data.

The cumulative probability distribution functions for selected frequencies

(Figure 7(A-I)) from these data graphically show the distribution differences relative to

the theoretical two degree of freedom %2 distribution. Although the functions for the

non-tonal frequencies (Fig. 7(A,C,D)) do not vary with the theoretical X2 cumulative

probability functions as closely as did the Kendall series distributions, the results from

the Komorogov-Smirnov tests indicate the observed variation is within acceptable

limits for a %2 distributed sample from such a small sample size (30).

The cumulative probability distribution functions for the tonally associated

frequencies (Figure 7(B,E,F,G,H,I)) present a range of covariation relative to the

theoretical X2 distribution. Tone power is observed to monotonically decrease as

frequency increases. The first four tones of the spectrum being non-x2 distributed with

the following higher frequency tones following the %2 distribution.

DISCUSSION

Kendall Series

For the Kendall series the two measurement errors associated with the spectral

estimates may be modeled with respect to an individual estimate Sxdf with an

associated number of degrees of freedom df as

'Sxdf(C°) = B(o Sx((°) + Edf (12)
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where Sx(e}) is the theoretical PSD, B(o is th_ frequency dependent bias error and Cdf

represents the random uncertainty error which1is X2f distributed. The bias error varies

proportionally to the second-derivative of the theoretical PSD and is therefore

frequency dependent. From the results of th_ analyses of the Kendall series data it is

observed that the PSD estimate distributions follow X2 distributions.

The theoretical PSD is unimodal with a maximum at approximately 0.11 hertz.

The theoretical PSD, not being flat or a ramp function, has a nonzero and changing

second derivative so a spectral estimate by either of the techniques will produce a

biased estimate. When the PSD has a higher frequency dependent second derivative

the bias error will be proportionally higher at :hese frequencies.

For equation 1 confidence intervals to be appropriate it should account for both

bias and uncertainty errors within the estimat,_ model. Since only the uncertainty

component is modeled it may be expected that the relationship between the

parametric value (theoretical PSD((o))and its estimates do not strictly follow equation

1. The confidence interval data from Figure ,_,and Table 2 support this expectation.

When the bias error is low, both sets of 400 t_ials at the two different degrees of

freedom resulted in close to 80% of the confiJence intervals bounding the parametric

values. For the high bias associated frequen=y with 2 associated degrees of freedom,

again close to 80% of the 400 trial confidenc,: intervals bounded I_. The relative width

of the confidence intervals for the 2 degree o freedom estimates compared to the

systematic bias error in the estimates causes this result. When the confidence

intervals are very wide (low associated df) th4._percent of the confidence interval trials

bounding _ follows equation 1. If this is true _asin the 2 degree of freedom case), the

systematic bias error is small in relation to the,range in estimates. For the 1000

associated degrees of freedom case, where 1herange of estimates is much smaller,

the bias error is large relative to the range of estimates and consequently much less

than 80% of the confidence intervals bound _..
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For equation 1 to be appropriate it also must account for the bias error in the

estimates for experimental data. Because the bias error for experimental data is not

known (_l not known), the inclusion of this term in the confidence interval equation is

impossible. Equation 1 can therefore be appropriate when there is no bias error. This

is achieved when the data is white noise so that the PSD is flat or linear in co.

It has been shown that the technique of prewhitening and postdarkening can be

used to convert a biased estimate into an unbiased estimate.6,9,10 The technique

involves designing a digital filter that will reduce Sx(00) to a spectra that is flat or at

least linear as a function of frequency. The transfer function for the digital filter, H(o)), is

then related to the original estimated Sx(o_) and the new flattened estimate ,Sy(O)) by

Sy(o)) = JH(co)l2 Sx(o)) (13)

By reversing the process the unbiased estimate of the parametric spectra may be

obtained by

Sx(e)) = SY(_)

IH(o_)]2
(14)

Hardin6 further suggests that the selection of the digital filter is a difficult process and

would probably be best implemented through an iterative approach. It is expected that

such unbiased estimates would still conform to the Z2 distribution in order to account

for their uncertainty if the time series data are Gaussian distributed.

Acoustic Data

The compound problems of bias and the omission of bias error in the

confidence interval equation are increased for the experimental acoustic data. The
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numerous tones at various frequencies of the spectrum cause this situation.

Consequently, the complexity of the process o define a digital filter to flatten the

spectra is much increased.

The distributions of spectral estimates for the acoustic data can be divided into

two groups, the tonally and non-tonally associated estimates. The distribution of

spectral estimates at the non-tonally associated frequencies, which, by our definition,

are roughly flat or at least linear in (co), follow the X2 distribution.

Ninety-five percent of the distributions associated with estimates at these

nontonal frequencies were statistically _2 dis ributed. Because of the linearity of the

second derivative of the power spectra at these frequencies, they may be considered

unbiased, making B(o (for equation 12) for th_se (o's very close to 1.0. Consequently,

for a large percentage of the power spectrum of the examined acoustic data, the

application of equation 1 for confidence inter sals is appropriate.

The distribution of spectral estimates _t the tonally associated frequencies of the

acoustic data were shown not to follow the X ,! family of distributions for the frequencies

of the spectrum with the most power. Efforts to define a single family of distributions

which modeled the distribution of spectral esimates at these tonal frequencies failed.

The tones, by our definition, include areas of the spectrum where the second

derivative would be relatively high or low, so the amount of bias at these frequencies

would be proportionately high or low. As su( h, the confidence interval calculations as

in equation 1 would seem inappropriate to a(count for the variation in these tonally

associated spectral estimates.

Confidence Interval Determinations _t Tonally Associated Frequencies

Appropriate confidence intervals for tl_.e tonally associated frequencies may be

determined using other techniques. If the bi_s and uncertainty errors of the estimates

are accounted for by the technique, it should perform well. One such technique could
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involve using the prewhitening and postdarkening technique as suggested by Hardin6

to remove the bias error from the estimates. Next, standard descriptive statistical

techniques to quantitatively describe the sample distribution such as skewness and

kurtosis could be computed. If one opted to use Gaussian distribution based

confidence intervals, statistical significance tests for the skewness and kurtosis

statistics could be performed to determine if the data were Gaussian distributed. If the

distribution was not Gaussian, transformations which reshape the distribution could be

performed. Each attempted transformation could be tested to determine if it

successfully produced a normal distribution by again determining the significance of

the skewness and kurtosis statistics relative to their expected values for a Gaussian

distribution. Once a statistically significant Gaussian distribution had been obtained,

an equation for the confidence interval bounding the mean of the transformed data

such as

Prob[Y - to_[n.1] s_ < p. < Y + to_[n_l]S_] = p (15)

could be used. Here Y would be the mean of the transformed distribution, o_is equal to

1 - p, n is the number of samples in the distribution, t a[n-1] is the oc-th percentile critical

value of Student's t-distribution with n-1 degrees of freedom, s_ is the sample

standard deviation and l.t is the unknown parametric mean. Once the confidence

interval of the transformed data had been determined it should be appropriately

inverse transformed and then converted to the dB scale.

This technique, while being theoretically sound, would demand considerable

computational expense, especially in the determination of the appropriate digital filter

to flatten the observed spectra for the prewhitening phase.
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General

The analysis of the experimental acou _tic data used the individual frequency

dependent spectral estimates to draw conclu,_ions. This approach is not usually used

when determining confidence intervals for an estimate. The average of the estimates

with its appropriate associated degrees of freedom as dictated by the additive property

of the _2 distribution is generally used. The conformity of the distributions of spectral

estimates to the theoretical X2 distributions which resulted with the Kendall series data

(Fig. (3A to 3E) and 4A) illustrates the soundr ess of this practice.

The inappropriateness of the X2 distril: ution based confidence intervals may

have been predicted based on the assumptic._s of the analysis techniques. As Otnes

and Enochson 2 have shown, if the time series data are random Gaussian distributed

variables, the real and imaginary coefficients associated with the DFT are independent

random variables. The periodic nature of helicopter acoustic data associated with the

main rotor and tail rotor blade passage frequ .mcies make these data not random.

Consequently, one of the assumptions of the analysis of the data is not valid.

CONCLU 3IONS

Chi-square distribution based confide_ce intervals may be appropriately

applied to non-tonally associated spectral es:imate distributions as determined by the

PSD or PS spectral methods. This seems logical since, by definition, the bias error is

near zero at the non-tonal frequencies and ttie estimate distributions are observed to

follow the X2 distribution. Consequently, X2 distribution based confidence intervals

account for the major errors associated with 'he estimates.

Because of the bias error and non-_ 2 distribution conformity of spectral estimate

distributions at tonally associated frequencie _, the application of X2 distribution based

confidence intervals is inappropriate at thes_ frequencies. An approach to determine
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confidence intervals at the tonally associated frequencies involving (a) prewhitening

and postdarkening to eliminate bias, (b) using descriptive statistical techniques as an

aid in determining the appropriate transform to force the sample distribution to conform

to a normal distribution, and then (c) using Gaussian techniques is suggested.
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TABL_--_1

Kolmorogov-Smirnov one sample test statisti,s (D) for Kendall Series data with

varying associated degrees of freedom. Sanlple size for all distributions, 10000.

Degrees of Freedom D Exact Significance

Probability

2 0.006458 0.798 NS

4 0.0081510 0.519 NS

10 0.0047907 0.975 NS

20 0.0072172 0.674 NS

100 0.006722'5 0.756 NS

Critical D(0.05,10_)00)= 0.00886

NS = not significant
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Table 2 - Percentages of Confidence Intervals Bounding the Parametric Values

Frequency

Hz

0.13

0.16

Relative

Bias

Low

High

Dearees of Freedom

2 1000

78.5 79.5

80.5 63.5
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TABLE 3 - Kolmorogov-Smirnov one-sample test statistics (D) for 500E power spectra

data at different frequencies. Sample size fo all distributions, 30.

Frequency D Exact Significance

(Hz) ProbabiLity

12.2 0.1498 0.510 NS

24.4 0.1115 0.849 N S

36.6 0.4267 0.000 S

48.8 0.1629 0.403 N S

61.0 0.1071 0.881 NS

73.2 0.4046 0.000 S

85.4 0.1507 0.502 NS

97.7 0.0850 0.981 NS

109.9 0.2796 0.018 S

122.1 0.1437 0.564 N S

134.3 0.2734 0.022 S

146.5 0.2836 0.016 S

158.7 0.0930 0.957 NS

170.9 0.1459 0.545 NS

183.1 0.1626 0.405 NS

195.3 0.0955 0.947 NS

207.5 0.1179 0.798 N S

219.7 0.2242 0.097 N S

231.9 0.0959 0.945 NS

244.1 0.1344 0.649 N S

256.3 0.1508 0.501 NS

268.6 0.1112 0.851 NS
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Table 3 - Continued

Frequency D Exact

(Hz) Probability

280.8 0.1312 0.679

293.0 0.1705 0.347

305.2 0.0886 0.972

317.4 0.1567 0.452

329.6 0.1423 0.577

341.8 0.1030 0.907

354.0 0.1239 0.746

366.2 0.0907 0.965

378.4 0.1348 0.646

390.6 0.0894 0.969

402.8 0.1059 0.889

415.0 0.1251 0.735

427.2 0.1049 0.895

439.5 0.2019 0.173

451.7 0.2359 0.070

463.9 0.1215 0.767

476.1 0.1568 0.451

488.3 0.1441 0.560

Significance

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

NS

Critical D(0.05,30 ) = 0.24170

NS = not significant

S = significant



Figure 1-A Frequency domain presentation of example 500E

data showing distributions of interest.
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Figure 1-B Frequency domain presentation of example

data showing distributions of interest.
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Figure 1-C Frequency domain presentation of example

data showing distributions of interest.
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Figure I-D Frequency domain presentation of example

data showing distributions of interest.
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Figure I-E 500gFrequency domain presentation of example

data showing distributions of interest.
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Figure 2-A Theoretical and simulated Kendall series power spectral density.
2 degrees of freedom estimate for simulated data.
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Figure 2-B Theoretical and simulated Kendall series power spectral density.
10 degrees of freedom estimate for simulated data.
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Figure 2-C Theoretical and simulated Kendall series power spectral density.
1O0 degrees of freedom estimate for simulated data.
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Figure 2-D Theoretical and simulated Kendall series power spectral density.
1000 degrees of freedom estimate for simulated data.
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Figure 2-E Theoretical and simulated Kendall series power spectral density.
20000 degrees of freedom estimate for simulated data.
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FIGURE 3-A DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY

10000 REALIZATIONS WITH 2 DEGREES OF FREEDOM EACH
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FIGURE 3-C DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY

10000 REALIZATIONS WITH 10 DEGREES OF FREEDOM EACH
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FIGURE 3-E DISTRIBUTION OF KENDALL SERIES POWER SPECTRAL DENSITY

10000 REALIZATIONS WITH 1000 DEGREES OF FREEDOM EACH
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Figure 4A. Histograms of PSD Spectral Estimates of Kendall
Series Data at Fixed Frequency (0.113 Hz)
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Figure 4-B Cumulative probability density functions for theoretical chi-square
distribution with 2 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at O.113 Hz.
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Figure 4-C Cumulative probability density functions for theoretical chi-square
distribution with 4 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at O.113 Hz.
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Figure 4-D Cumulative probability density functions for theoretical chi-square
distribution with 10 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at 0.113 Hz.
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Figure 4-E Cumulative probability density functions for theoretical chi-square
distribution with 20 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at O.113 Hz.
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Figure 4-F Cumulative probability density functions for theoretical chi-square
distribution with 1O0 degrees of freedom and a distribution of 10000 spectral
estimates from the Kendall series data evaluated at O.113 Hz.
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Figure 5-A Eighty percent confidence intervals of 2 DOF spectral
estimates from 400 trials.
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Figure 6 Power Spectrum of NASA/MDHC 500E Acoustic Data
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Figure 7-A Cumulative probabiliky distribution functions for theoretical
Chi-square disvribution with 2 degrees of freedom and a

distribution of 30 spectral estimates from 500E
data evaluated at 94.4 Hertz.
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Figure V-B Cumulative probability distribution functions for theoretical

Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E

data evaluated at 36.6 Hertz.
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Figure 7-C Cumulative probability distribution functions for theoretical

Chi-square distribution with 2 degrees of freedom and a

distribution of 30 spectral estimates from 500E

data evaluated at 48.8 Hertz.
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Figure 7-D Cumulative probability distribution functions for theoretical

Chi-square distribution with 2 degrees of freedom and a

distribution of 30 spectral estimates from 500E

data evaluated at 61.0 Hertz.
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Figure 7-E Cumulative probability distribution functions for theoretical

Chi-square distribution wit'h 2 degrees of freedom and a

distribution of :30 spectral estimates from 500E
data evaluated at 73.2 Hertz.
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Figure 7-F Cumulative probability distribution functions for theoreLical
Chi-square distribution with 2 degrees of freedom and a

distribution of 30 spectral estimates from 500E
data evaluated at 109.9 Hertz.

Cumulative

Probability

1.0

0.9

0.8

t).,

0.6

0.5

0.il

0.3

0.2

0.1

0.0

/./

i
0.0 0.4 0.8 1.2 1.6 2.0 2.4 28 3.2 3.6 4.0

Standardized Values

(11
oo



Figure 7-G Cumulative probability distribution functions for

Chi-square distribution with 2 degrees of freedom and

distribution of :30 spectral estimates from 500E
data evaluated at 146.5 Hertz.

theoretical

Curnuletive

Probobility

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

z

z

f
/

L //
/

/

- /

k ....J /

 r__J

0.0 0.4 0.7 1.1 1.5 1.9 2.2 2.6 3.0 3,3 3.7

Standardized Values

(.;1
cO



Figure 7-H Cumulative probability distribution functions for theoretical

Chi-square distribution with 2 degrees of freedom and a
distribution of 30 spectral estimates from 500E

data evaluated at 183.1 Hertz.
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Figure T-I Cumulative probability distribution functions for theoretical
Chi-sque, re distribution with & degrees of freedom and a

distribution of 30 spectral estimates from 500E
,data evaluated at 219.7 Hertz.
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